Miniatury matematyczne 71
13.83 zł | |
Rabat: | 6.70 zł |
Cena katalogowa: | 20.53 zł |
Najniższa cena z ostatnich 30 dni: | 13.07 zł |
Dostępność: 6
Czas realizacji:
48 godzin
Średnia ocena: 0
Dodaj recenzję »
Koszt dostawy
Standardowy koszt dostawy na terenie RP od 7,99zł
Darmowa dostawa
Do darmowej dostawy pozostało: 399.00 zł
Miniatury matematyczne 71
Autorzy | Sendlewski Andrzej, Gołębiewska Anna, Wysokińska-Pliszka Magdalena, Kraśkiewicz Witold |
---|---|
Format | 16.3x24.0cm |
Języki | polski |
Miejscowość | Toruń |
Oprawa | Miękka |
Pkwiu | 58.11.1 |
Rok wydania | 2020 |
Tematyka | Matematyka |
Wydanie | 1 |
Wydawca | Aksjomat Piotr Nodzyński |
Kod EAN/ISBN | 9788364660863 |
Liczba stron | 76 |
Do Czytelników
W skład tegorocznego tomiku miniatur dla szkół średnich weszły cztery artykuły. Pierwszy z nich poświęcony jest paraboli. Ze wszystkich kształtów obłych badanych przez matematyków greckich w starożytności w geometrii szkolnej zachował się jedynie okrąg. I to wcale nie dlatego, że inne kształty okazały się nieistotne lub nieużyteczne. Wystarczy przypomnieć, że Ziemia obiega Słońce po elipsie, że gdyby zaniedbać opór powietrza, to wystrzelony pocisk lub kanapka strącona ze stołu poruszałyby się po paraboli i że z powodów czysto geometrycznych najbardziej pożądanym kształtem powierzchni odbijającej (czy to w reflektorze samochodowym, czy to w antenie satelitarnej) jest powierzchnia o przekroju parabolicznym. Uczeń współczesnej szkoły poznaje parabolę jako wykres funkcji kwadratowej i kojarzy ją raczej z algebrą niż z geometrią. Nie jest świadom, że w starożytności zdefiniowano ją w sposób czysto geometryczny i udowodniono wiele jej własności. Czy przyczyną tego stanu rzeczy była trudność w wykreśleniu paraboli w zeszycie? Dzisiaj, gdy uczeń coraz chętniej zamienia papier i cyrkiel na ekran laptopa i program graficzny, ta przeszkoda znika. Autor, doświadczony nauczyciel geometrii pokoleń uczniów i studentów, proponuje Wam wspólne, wspomagane komputerowo odkrywanie geometrii paraboli.
Druga miniatura nosi nieco mylący tytuł Trzeba sobie pomagać. Nie chodzi tu jednak o stosunki międzyludzkie i kooperacją, a o pomaganie sobie przy rozwiązywaniu zadań dotyczących jednego działu matematyki metodami wziętymi z zupełnie innego, czasami pozornie bardzo odległego działu. Autorki na przykładzie zadań pochodzących z różnych olimpiad i konkursów pokazują, jak można rozwiązać problem sformułowany czysto geometrycznie za pomocą metod algebraicznych i odwrotnie, jak użyć geometrii do rozwiązania problemów algebraicznych. Taki przepływ metod i idei nie jest rzeczą wyjątkową i zwykle prowadzi do ciekawych wniosków, a czasami do powstania nowych dziedzin matematyki — oprócz znanej ze szkoły geometrii analitycznej mamy na przykład geometrię algebraiczną i analityczną teorię liczb.
W następnej miniaturze nie znajdziecie ani zadań szkolnych, ani konkursowych, ani nawet twierdzeń, które mogą okazać się przydatne do ich rozwiązana. Została ona pomyślana jako opowieść o tym, co obecnie dzieje się w matematyce — oczywiście nie w całej matematyce, a jedynie na pewnym, wybranym odcinku. Tym odcinkiem jest tak zwana teoria złożoności zajmująca się w pewnym uproszczeniu pytaniem, co można obliczyć za pomocą komputerów. A że jest to raczej opowieść niż wykład, nie zrażajcie się, jeśli pewne szczegóły wydadzą się Wam niejasne i spróbujcie mimo to doczytać ją do końca.
Autorzy | Sendlewski Andrzej, Gołębiewska Anna, Wysokińska-Pliszka Magdalena, Kraśkiewicz Witold |
---|---|
Format | 16.3x24.0cm |
Języki | polski |
Miejscowość | Toruń |
Oprawa | Miękka |
Pkwiu | 58.11.1 |
Rok wydania | 2020 |
Tematyka | Matematyka |
Wydanie | 1 |
Wydawca | Aksjomat Piotr Nodzyński |
Kod EAN/ISBN | 9788364660863 |
Liczba stron | 76 |